If you're seeing this message, it means we're having trouble loading external resources on our website.

Hvis du sidder bag et internet-filter, skal du sikre, at domænerne *. kastatic.org og *.kasandbox.org ikke er blokeret.

Hovedindhold

Introduktion til inverse funktioner

Lær hvad inverse funktioner er, hvordan man bestemmer inverse funktioner ud fra oplysninger i en tabel eller en graf.
En invers funktion er kort fortalt en funktion, som gør "det omvendte" af en anden funktion. Vi kan også kalde den en "omvendt funktion".
For eksempel kan vi nedenunder se, at f tager 1 til x, 2 til z og 3 til y.
Et oversigtsdiagram mærket f med to ovaler ved siden af hinanden. Den venstre indeholder værdierne en, to og tre. Den højre værdierne x, y og z. En pil går fra 1 til x. En pil går fra 2 til z. En pil går fra 3 til x.
Den inverse til f, skrives som f, start superscript, minus, 1, end superscript (og udtales bare "den inverse til f"), gør det omvendte. Den inverse funktion f, start superscript, minus, 1, end superscript tager x til 1, y til 3 og z til 2. Det er vigtigt at bemærke, at selvom start superscript, minus, end superscriptstart superscript, 1, end superscript er skrevet som en eksponent, så har det ikke noget med potenser at gøre; det er bare måden at skrive det på. Det er lidt det samme som i trigonometri, hvor vi f.eks. har cosstart superscript, minus, end superscriptstart superscript, 1, end superscript.
Et oversigtsdiagram mærket den inverse til f med to ovaler ved siden af hinanden. Den venstre indeholder værdierne x y og z. Den højre værdierne 1 2 og 3. En pil går fra x til 1. En pil går fra y til 3. En pil går fra z til 2.
Spørgsmål til overvejelse
Hvilket følgende udsagn er sandt?
Vælg 1 svar:

Definition af inverse funktioner

Generelt gælder der, at hvis en funktion f tager a til b, så vil den inverse funktion, f, start superscript, minus, 1, end superscript, tage b til a.
Et diagram to firkanter ved siden af hinanden mærket f og den inverse til f. a går ind i f og bliver til b, der går ind den inverse til f og bliver til a.
Ud fra det kan vi lave en formel definition for inverse funktioner:

f, left parenthesis, a, right parenthesis, equals, b, \Longleftrightarrow, f, start superscript, minus, 1, end superscript, left parenthesis, b, right parenthesis, equals, a

Lad os bruge denne definition til at gennemgå nogle eksempler.

Eksempel 1: Diagram

Et oversigtsdiagram mærket h med to ovaler ved siden af hinanden. Den venstre indeholder værdierne 0 4 6 og 9. Den højre værdierne 3 7 9 og 12. En pil går fra 0 til 7. En pil går fra 4 til 3. En pil går fra 6 til 9. en pil går fra 9 til 12.
Lad os antage, at funktionen h er repræsenteret med diagrammet ovenfor. Hvad er h, start superscript, minus, 1, end superscript, left parenthesis, 9, right parenthesis?

Løsning

I diagrammet kan vi aflæse oplysninger om funktionen h, og vi bliver bedt om at svare på et spørgsmål om h, start superscript, minus, 1, end superscript. Fordi inverse funktioner gør det omvendte af hinanden, skal vi også tænke omvendt.
For at bestemme h, start superscript, minus, 1, end superscript, left parenthesis, 9, right parenthesis skal vi finde det input i funktionen h, som giver funktionsværdien 9. Det er fordi, hvis h, start superscript, minus, 1, end superscript, left parenthesis, 9, right parenthesis, equals, x, så ud fra definitionen er h, left parenthesis, x, right parenthesis, equals, 9.
Ud fra diagrammet kan vi se, at h, left parenthesis, 6, right parenthesis, equals, 9, så h, start superscript, minus, 1, end superscript, left parenthesis, 9, right parenthesis, equals, 6.

Tjek din forståelse

Et oversigtsdiagram mærket g med to ovaler ved siden af hinanden. Den venstre indeholder værdierne minus 1 0 3 og 5. Den højre værdierne 2 3 4 8. En pil går fra minus 1 til 3. En pil går fra 0 til 4. En pil går fra 3 til 8. En pil går fra 5 til 2.
Opgave 1
g, start superscript, minus, 1, end superscript, left parenthesis, 3, right parenthesis, equals
  • Dit svar skal være
  • et heltal, som f.eks. 6
  • en reduceret, ægte brøk, som eksempelvis 3, slash, 5
  • en reduceret, uægte brøk, som eksempelvis 7, slash, 4
  • et blandet tal, som eksempelvis 1, space, 3, slash, 4
  • et eksakt decimaltal, som eksempelvis 0, comma, 75
  • et multiplum af pi, som f.eks. 12, space, start text, p, i, end text eller 2, slash, 3, space, start text, p, i, end text

Eksempel 2: Graf

Dette er grafen for funktionen g. Lad os bestemme g, start superscript, minus, 1, end superscript, left parenthesis, minus, 7, right parenthesis.
Et koordinatsystem med alle fire kvadranter. x aksen har markeringer for hver en halv. Hver anden markering fra minus 4 til 4 er mærket. y aksen har markeringer for hver 1. Hver anden markering fra minus 8 til 8 er mærket. En funktion y lig g af x er afbildet som en buet fuldt optrukket linje. Den går gennem minus 3 komma minus 7, vokser op og flader ud ved minus 1 komma minus 5. Så vokser den igen gennem 0 komma minus 5 en halv, 1 komma minus 3 en halv, 2 komma 2 og 3 komma 10.

Løsning

For at bestemme g, start superscript, minus, 1, end superscript, left parenthesis, minus, 7, right parenthesis kan vi finde det input til g, som giver funktionsværdien minus, 7. Det kan vi, fordi hvis g, start superscript, minus, 1, end superscript, left parenthesis, minus, 7, right parenthesis, equals, x, så er g, left parenthesis, x, right parenthesis, equals, minus, 7 ud fra definitionen om inverse funktioner.
Ud fra grafen kan vi se, at g, left parenthesis, minus, 3, right parenthesis, equals, minus, 7.
Derfor er g, start superscript, minus, 1, end superscript, left parenthesis, minus, 7, right parenthesis, equals, minus, 3.
Et koordinatsystem med alle fire kvadranter. x aksen har markeringer for hver en halv. Hver anden markering fra minus 4 til 4 er mærket. y aksen har markeringer for hver 1. Hver anden markering fra minus 8 til 8 er mærket. En funktion y lig g af x er afbildet som en buet fuldt optrukket linje. Den går gennem minus 3 komma minus 7, vokser op og flader ud ved minus 1 komma minus 5. Så vokser den igen gennem 0 komma minus 5 en halv, 1 komma minus 3 en halv, 2 komma 2 og 3 komma 10. En vandret stiplet linje går fra minus 7 på y aksen til det mærket punkt minus 3 komma minus 7 på grafen for g. En lodret stiplet linje går fra punktet til minus 3 på x aksen.

Tjek din forståelse

Et koordinatsystem med alle fire kvadranter. Begge akser har markeringer for hver en halv. Hver anden markering fra minus 4 til 4 er mærket. En funktion y lig h af x er afbildet som en fuldt optrukket ret linje. Den går gennem minus 2 komma 4, 0 komma 3 og 2 komma 2.
Opgave 2
Hvad er h, start superscript, minus, 1, end superscript, left parenthesis, 4, right parenthesis?
Vælg 1 svar:

Udfordrende opgave
Givet at f, left parenthesis, x, right parenthesis, equals, 3, x, minus, 2, hvad er så f, start superscript, minus, 1, end superscript, left parenthesis, 7, right parenthesis?
  • Dit svar skal være
  • et heltal, som f.eks. 6
  • en reduceret, ægte brøk, som eksempelvis 3, slash, 5
  • en reduceret, uægte brøk, som eksempelvis 7, slash, 4
  • et blandet tal, som eksempelvis 1, space, 3, slash, 4
  • et eksakt decimaltal, som eksempelvis 0, comma, 75
  • et multiplum af pi, som f.eks. 12, space, start text, p, i, end text eller 2, slash, 3, space, start text, p, i, end text

Den grafiske sammenhæng

Eksemplerne ovenfor viste os den algebraiske sammenhæng mellem en funktion og dens inverse, men man kan faktisk også betragte sammenhængen grafisk!
Betragt funktionen f, som er repræsenteret både med en graf og en funktionstabel.
Et koordinatsystem med alle fire kvadranter. Begge akser har markeringer for hver 1. Hver anden markering fra minus 4 til 4 er mærket. En funktion y lig f af x er afbildet som en fuldt optrukket buet linje. Den går gennem de afbildede punkter minus 2 komma en kvart, minus 1 komma en halv, 0 komma 1, 1 komma 2 og 2 komma 4.
xf, left parenthesis, x, right parenthesis
minus, 2start fraction, 1, divided by, 4, end fraction
minus, 1start fraction, 1, divided by, 2, end fraction
01
12
24
Vi kan bytte rundt på inputs og funktionsværdier for funktionen f for at finde inputs og funktionsværdier for f, start superscript, minus, 1, end superscript. Så hvis left parenthesis, a, comma, b, right parenthesis ligger på grafen for y, equals, f, left parenthesis, x, right parenthesis, så ligger left parenthesis, b, comma, a, right parenthesis på grafen for y, equals, f, start superscript, minus, 1, end superscript, left parenthesis, x, right parenthesis.
Det giver os denne graf og funktionstabel for f, start superscript, minus, 1, end superscript.
Et koordinatsystem med alle fire kvadranter. Begge akser har markeringer for hver 1. Hver anden markering fra minus 4 til 4 er mærket. En funktion y lig den inverse til f af x er afbildet som en fuldt optrukket buet linje. Den går gennem en kvart komma minus 2, en halv komma minus 1, 1 komma 0, 2 komma 1 og 4 komma 2.
xf, start superscript, minus, 1, end superscript, left parenthesis, x, right parenthesis
start fraction, 1, divided by, 4, end fractionminus, 2
start fraction, 1, divided by, 2, end fractionminus, 1
10
21
42
Hvis vi kigger på begge grafer samlet, så kan vi se, at grafen for y, equals, f, left parenthesis, x, right parenthesis og grafen for y, equals, f, start superscript, minus, 1, end superscript, left parenthesis, x, right parenthesis er hinandens spejlinger i linjen y, equals, x.
Et koordinatsystem. Begge akser har markeringer for hver en halv. Hver anden markering fra minus 4 til 4 er mærket. Grafen for funktionen f er afbildet. Grafen har ligningen y er lig med 2 opløftet til x. Grafen for den inverse funktion er også afbildet. Grafen for linjen y er lig med x er afbildet som en stiplet linje. De to funktioner er hinandens spejlbilleder i denne linje.
Dette gælder generelt; grafen for en funktion og grafen for dens inverse vil altid være hinandens spejlbilleder i linjen y, equals, x.

Tjek din forståelse

Opgave 3
Dette er grafen for y, equals, h, left parenthesis, x, right parenthesis.
Et koordinatsystem med alle fire kvadranter. Begge akser har mærkede markeringer for hver 2 fra minus 8 til 8. En funktion er afbildet som en fuldt optrukket ret linje. Den går gennem 0 komma minus 2, og 6 komma 0.
Hvilken af nedenstående grafer er grafen for y, equals, h, start superscript, minus, 1, end superscript, left parenthesis, x, right parenthesis?
Vælg 1 svar:

Opgave 4
Grafen for y, equals, h, left parenthesis, x, right parenthesis er et linjestykke med endepunkterne left parenthesis, 5, comma, 1, right parenthesis og left parenthesis, 2, comma, 7, right parenthesis.
Træk i endepunkterne i det fuldt optrukkede linjestykke for at tegne grafen for y, equals, h, start superscript, minus, 1, end superscript, left parenthesis, x, right parenthesis.

Hvorfor skal vi lære om inverse funktioner?

Det kan måske være svært at forstå, hvorfor vi overhovedet skal lære om inverse funktioner, og hvor de kan bruges, men de er ganske anvendelige, og vi bruger dem faktisk hele tiden!
Betragt f.eks. ligningen C, equals, start fraction, 5, divided by, 9, end fraction, left parenthesis, F, minus, 32, right parenthesis, som kan bruges til at omregne temperaturen i Fahrenheit, F, til grader Celsius, C.
Og lad os så antage, at vi nu ønsker en ligning, som gør præcis det omvendte – altså omregner temperaturen i grader Celsius til temperaturen i Fahrenheit. Det gør vi ved at isolere F i den oprindelige ligning, og så får vi F, equals, start fraction, 9, divided by, 5, end fraction, C, plus, 32, hvilket er den inverse funktion.
Helt grundlæggende kan vi sige, at når vi løser ligninger i matematik, så "isolerer vi variablen". Når vi isolerer variablen, så gør vi altid "det omvendte". Det er sådan set også det grundlæggende i arbejdet med inverse funktioner.

Vil du deltage i samtalen?

Ingen opslag endnu.
Forstår du engelsk? Klik her for at se flere diskussioner på Khan Academys engelske side.