If you're seeing this message, it means we're having trouble loading external resources on our website.

Hvis du sidder bag et internet-filter, skal du sikre, at domænerne *. kastatic.org og *.kasandbox.org ikke er blokeret.

Hovedindhold

Gennemgang af beviset for løsningsformlen for andengradsligninger

Et tekst-baseret bevis (ikke video) for løsningsformlen.
Løsningsformlen for en andengradsligning siger, at
x, equals, start fraction, minus, start color #e07d10, b, end color #e07d10, plus minus, square root of, start color #e07d10, b, end color #e07d10, squared, minus, 4, start color #7854ab, a, end color #7854ab, start color #e84d39, c, end color #e84d39, end square root, divided by, 2, start color #7854ab, a, end color #7854ab, end fraction
for alle andengradsligninger på formen:
start color #7854ab, a, end color #7854ab, x, squared, plus, start color #e07d10, b, end color #e07d10, x, plus, start color #e84d39, c, end color #e84d39, equals, 0
Hvis du aldrig har set denne formel bevist før, kan det være en fordel at se et video-bevis, men hvis du repeterer eller foretrækker et tekst-baseret bevis, så er det her:

Beviset

Vi tager udgangspunkt i standardformen for en andengradsligning og udfører en masse algebra for at isolere x. Kernen i beviset er at omskrive til start color #11accd, start text, k, v, a, d, r, a, t, e, t, space, p, a, with, \r, on top, space, e, n, space, t, o, l, e, d, d, e, t, space, s, t, ø, r, r, e, l, s, e, end text, end color #11accd. Hvis du ikke er fortrolig med denne teknik, kan du genopfriske den ved at se denne video.

Del 1: Kvadratet på en toleddet størrelse

ax2+bx+c=0(1)ax2+bx=c(2)x2+bax=ca(3)x2+bax+b24a2=b24a2ca(4)(x+b2a)2=b24a2ca(5)\begin{aligned} \purpleD{a}x^2 + \goldD{b}x + \redD{c} &= 0&(1)\\\\ ax^2+bx&=-c&(2)\\\\ x^2+\dfrac{b}{a}x&=-\dfrac{c}{a}&(3)\\\\ \blueD{x^2+\dfrac{b}{a}x+\dfrac{b^2}{4a^2}}&\blueD{=\dfrac{b^2}{4a^2}-\dfrac{c}{a}}&(4)\\\\ \blueD{\left (x+\dfrac{b}{2a}\right )^2}&\blueD{=\dfrac{b^2}{4a^2}-\dfrac{c}{a}}&(5) \end{aligned}

Del 2: Algebra! Algebra! Algebra!

Husk, at målet er at isolere x, ligesom i løsningsformlen.
(x+b2a)2=b24a2ca(5)(x+b2a)2=b24a24ac4a2(6)(x+b2a)2=b24ac4a2(7)x+b2a=±b24ac4a2(8)x+b2a=±b24ac2a(9)x=b2a±b24ac2a(10)x=b±b24ac2a(11)\begin{aligned} \left (x+\dfrac{b}{2a}\right )^2&=\dfrac{b^2}{4a^2}-\dfrac{c}{a}&(5) \\\\ \left (x+\dfrac{b}{2a}\right )^2&=\dfrac{b^2}{4a^2}-\dfrac{4ac}{4a^2} &(6)\\\\ \left (x+\dfrac{b}{2a}\right )^2&=\dfrac{b^2-4ac}{4a^2}&(7)\\\\ x+\dfrac{b}{2a}&=\pm \dfrac{\sqrt{b^2-4ac}}{\sqrt{4a^2}}&(8)\\\\ x+\dfrac{b}{2a}&=\pm \dfrac{\sqrt{b^2-4ac}}{2a}&(9)\\\\ x&=-\dfrac{b}{2a}\pm \dfrac{\sqrt{b^2-4ac}}{2a}&(10)\\\\ x&=\dfrac{-\goldD{b}\pm\sqrt{\goldD{b}^2-4\purpleD{a}\redD{c}}}{2\purpleD{a}}&(11) \end{aligned}
Og så er vi faktisk færdige!

Vil du deltage i samtalen?

Forstår du engelsk? Klik her for at se flere diskussioner på Khan Academys engelske side.