Hovedindhold

Integraler

Lær
Introduction to integral calculusDefinite integrals introExploring accumulation of changeWorked example: accumulation of change
Træn opgaver
Lær
Riemann approximation introductionOver- and under-estimation of Riemann sumsLeft & right Riemann sumsWorked example: finding a Riemann sum using a tableWorked example: over- and under-estimation of Riemann sumsMidpoint sumsTrapezoidal sumsUnderstanding the trapezoidal ruleRiemann sums reviewMotion problem with Riemann sum approximation
Lær
Summation notationSummation notationWorked examples: Summation notation
Træn opgaver
Lær
Riemann sums in summation notationRiemann sums in summation notationWorked example: Riemann sums in summation notationMidpoint and trapezoidal sums in summation notationRiemann sums in summation notation: challenge problem
Lær
Definite integral as the limit of a Riemann sumDefinite integral as the limit of a Riemann sumWorked example: Rewriting definite integral as limit of Riemann sumWorked example: Rewriting limit of Riemann sum as definite integral
Lær
The fundamental theorem of calculus and accumulation functionsFunctions defined by definite integrals (accumulation functions)Finding derivative with fundamental theorem of calculusFinding derivative with fundamental theorem of calculus: chain rule
Lær
Interpreting the behavior of accumulation functionsInterpreting the behavior of accumulation functions
Lær
Negative definite integralsFinding definite integrals using area formulasDefinite integral over a single pointIntegrerer skaleret udgave af funktionÆndrer grænserne for bestemt integralIntegrerer summen af funktionerWorked examples: Finding definite integrals using algebraic propertiesDefinite integrals on adjacent intervalsWorked example: Breaking up the integral's intervalWorked example: Merging definite integrals over adjacent intervalsFunctions defined by integrals: switched intervalFinding derivative with fundamental theorem of calculus: x is on lower boundFinding derivative with fundamental theorem of calculus: x is on both boundsFunctions defined by integrals: challenge problemDefinite integrals properties review
Lær
The fundamental theorem of calculus and definite integralsStamfunktioner og ubestemte integralerBevis for den fundamentale sætning i calculus
Lær
Reverse power ruleIndefinite integrals: sums & multiplesRewriting before integratingRewriting before integrating: challenge problemReverse power rule review
Se hvor du er blevet bedre med disse lektioner:
Lær
Indefinite integral of 1/xIndefinite integrals of sin(x), cos(x), and eˣCommon integrals review
Lær
Definite integrals: reverse power ruleDefinite integral of rational functionDefinite integral of radical functionDefinite integral of trig functionDefinite integral involving natural logDefinite integral of piecewise functionDefinite integral of absolute value function
Se hvor du er blevet bedre med disse lektioner:
Lær
𝘶-substitution intro𝘶-substitution: multiplying by a constant𝘶-substitution: defining 𝘶𝘶-substitution: defining 𝘶 (more examples)𝘶-substitution𝘶-substitution: rational function𝘶-substitution: logarithmic function𝘶-substitution warmup𝘶-substitution: definite integrals𝘶-substitution with definite integrals𝘶-substitution: definite integral of exponential function𝘶-substitution: special application𝘶-substitution: double substitution𝘶-substitution: challenging application
Lær
Integration using long divisionIntegration using completing the square and the derivative of arctan(x)
Lær
Integral of cos^3(x)Integral of sin^2(x) cos^3(x)Integral of sin^4(x)
Lær
Introduction to trigonometric substitutionSubstitution with x=sin(theta)More trig sub practiceTrigonometri og u-substitution sammen (del 1)Trigonometrisk og u-substitution sammen (del 2)Trigonometrisk substitution med tangensMore trig substitution with tangentLong trig sub problem
Lær
Integration by parts introIntegration by parts: ∫x⋅cos(x)dxIntegration by parts: ∫ln(x)dxIntegration by parts: ∫x²⋅𝑒ˣdxIntegration by parts: ∫𝑒ˣ⋅cos(x)dxIntegration by parts: definite integralsIntegration by parts challengeIntegration by parts review
Lær
Integration with partial fractions
Lær
Introduktion til uægte integralerDivergerende uegentligt integralImproper integrals reviewUægte integral med to uendelige grænser
Træn opgaver
Lær
Bevis for den fundamentale sætning i calculusIntuition for second part of fundamental theorem of calculus
Test din forståelse af Integraler med disse 37 spørgsmål.

Om dette emne

The definite integral of a function gives us the area under the curve of that function. Another common interpretation is that the integral of a rate function describes the accumulation of the quantity whose rate is given. We can approximate integrals using Riemann sums, and we define definite integrals using limits of Riemann sums. The fundamental theorem of calculus ties integrals and derivatives together and can be used to evaluate various definite integrals.