Hovedindhold
Algebra 2
Emne: (Algebra 2 > Emne 5
Modul 2: Positive og negative intervaller for polynomier- Positive og negative intervaller for polynomier
- Positive og negative intervaller for polynomier
- Multiplicitet af nulpunkter i polynomier
- Nulpunkter i polynomier (multiplicitet)
- Nulpunkter i polynomier (multiplicitet)
- Nulpunkter i polynomier og deres grafer
- Positive og negative intervaller for polynomier
© 2023 Khan AcademyBrugerbetingelserFortrolighedspolitikCookiemeddelelse
Positive og negative intervaller for polynomier
Lær om sammenhængen mellem nulpunkterne i et polynomium og de intervaller, hvor det er positivt og negativt.
Hvad du bør have styr på, inden du går igang med dette modul
Nulpunkterne i polynomiet f svarer til skæring med x-aksen af grafen for ligningen y, equals, f, left parenthesis, x, right parenthesis.
Lad os se på et eksempel. Da funktionen f, left parenthesis, x, right parenthesis, equals, left parenthesis, x, plus, 3, right parenthesis, left parenthesis, x, minus, 1, right parenthesis, squared har nulpunkterne minus, 3 og 1, så vil grafen for ligningen, y, equals, f, left parenthesis, x, right parenthesis, have skæring med x-aksen i punkterne left parenthesis, minus, 3, comma, 0, right parenthesis og left parenthesis, 1, comma, 0, right parenthesis.
Hvis dette er nyt for dig, så læs artiklen Nulpunkter i polynomier og deres grafer.
Hvad du kan lære i dette modul
Selvom skæring med x-aksen er en vigtig egenskab at kende, så er det ikke nok information til at kunne skitsere grafen for en funktion.
Det hjælper at kende funktionens fortegn mellem to nulpunkter, når grafen skal skitseres.
I denne artikel skal vi lære at lave en fortegnsundersøgelse, der viser i hvilke intervaller funktionsværdien af polynomiet er negativ eller positiv, samt hvordan dette kan bruges til at skitsere grafen for funktionen.
Positive og negative intervaller
Funktionsværdien mellem to på hinanden følgende nulpunkter er altid enten positiv eller negativ i hele dette interval.
Lad os se på grafen for funktionen f, left parenthesis, x, right parenthesis, equals, left parenthesis, x, plus, 1, right parenthesis, left parenthesis, x, minus, 1, right parenthesis, left parenthesis, x, minus, 3, right parenthesis.
Vi kan se, at funktionsværdien for f, left parenthesis, x, right parenthesis er ...
- ...negativ i hele intervallet minus, infinity, is less than, x, is less than, minus, 1.
- ...positiv i hele intervallet minus, 1, is less than, x, is less than, 1.
- ...negativ i hele intervallet 1, is less than, x, is less than, 3.
- ...positiv i hele intervallet 3, is less than, x, is less than, infinity.
Det er dog vigtigt at huske, et polynomium ikke nødvendigvis skifter fortegn mellem to nulpunkter.
Lad os se på grafen for funktionen g, left parenthesis, x, right parenthesis, equals, x, left parenthesis, x, plus, 2, right parenthesis, squared.
Vi kan se, at funktionsværdien for g, left parenthesis, x, right parenthesis er...
- ...negativ i hele intervallet minus, infinity, is less than, x, is less than, minus, 2.
- ...negativ i hele intervallet minus, 2, is less than, x, is less than, 0.
- ...positiv i hele intervallet 0, is less than, x, is less than, infinity.
Funktionsværdien for g, left parenthesis, x, right parenthesis skifter altså ikke fortegn ved x, equals, minus, 2.
Fortegnsundersøgelse af et polynomium
Lad os bestemme i hvilke intervaller fortegnet for funktionsværdien af f, left parenthesis, x, right parenthesis, equals, left parenthesis, x, plus, 3, right parenthesis, left parenthesis, x, minus, 1, right parenthesis, squared er positivt og i hvilke det er negativt.
Funktionen f har nulpunkterne minus, 3 og 1 og danner derfor tre intervaller. I hvert af disse intervaller er fortegnet for funktionsværdien af f konstant:
Lad os bestemme fortegnet af f i intervallet minus, infinity, is less than, x, is less than, minus, 3.
Fortegnet er enten positivt eller negativt i hele intervallet, så vi kan bestemme fortegnet ved at indsætte en enkelt værdi fra intervallet i funktionsforskriften for f. Da minus, 4 ligger i intervallet, lad os finde f, left parenthesis, minus, 4, right parenthesis.
Da vi kun er interesseret i fortegnet, behøver vi ikke lave hele udregningen:
Da f, left parenthesis, minus, 4, right parenthesis er negativ, så er f, left parenthesis, x, right parenthesis negativ i hele intervalletminus, infinity, is less than, x, is less than, minus, 3.
Vi kan lave den samme analyse af de andre intervaller.
Funktionens fortegnsvariation kan ses i tabellen nedenfor.
Interval | Beregnet funktionsværdi for f, left parenthesis, x, right parenthesis | Fortegn for f | Beliggenhed af grafen forf |
---|---|---|---|
minus, infinity, is less than, x, is less than, minus, 3 | f, left parenthesis, minus, 4, right parenthesis, is less than, 0 | negativt | Under x-aksen |
minus, 3, is less than, x, is less than, 1 | f, left parenthesis, 0, right parenthesis, is greater than, 0 | positivt | Over x-aksen |
1, is less than, x, is less than, infinity | f, left parenthesis, 2, right parenthesis, is greater than, 0 | positivt | Over x-aksen |
Tabellens indhold stemmer overens med grafen for y, equals, f, left parenthesis, x, right parenthesis.
Tjek din forståelse
Udfordrende opgave
Bestemme positive og negative intervaller ved grafisk aflæsning
I stedet for en fortegnsundersøgelse kan man også finde de positive og negative intervaller ved grafisk aflæsning. Grafen kan laves ved at bruge viden om funktionens opførsel i plus og minus uendelig samt nulpunkternes multiplicitet.
Du kan læse mere i vores artikel Grafer for polynomier.
Vil du deltage i samtalen?
Ingen opslag endnu.